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INTRODUCTION 

THE HEAT transfer by conduction through layers of uniform 
thickness surrounding a planar wall, a sphere, or a circular 
cylinder can be found from simple solutions to the one- 
dimensional conduction equation. Simple exact solutions are 
not available, however, when the uniform layer surrounds 
other body shapes. Yet in practice, it is often desirable to 
predict the heat transfer through such layers-for example, 
through layers of insulation applied to diverse objects, such 
as ducts, which come in a variety of cross-sectional shapes. 
Calculating natural convection heat transfer by the ‘con- 
duction layer method’ (Raithby and Hollands [l]) provides 
yet another circumstance in which one needs to predict heat 
conducted through a uniform layer. The ‘conduction layer 
method’ provides its answer in terms of the thickness of a 
hypothetical stagnant fluid layer offering the same resistance 
to heat transfer as the actual boundary layer; finding the 
heat transfer then requires solving for the heat conducted 
through this layer. 

Finding the heat transfer reduces to finding the layer’s 
thermal resistance R, or equivalently the shape factor, S, 
where 

where Q is the heat transfer, AT is the applied temperature 
difference, and k is the thermal conductivity of the layer 
material. The present paper derives a simple approximate 
equation for S for cases in which the flow of heat is two- 
dimensional. The equation gives an upper bound for the 
exact value of S. The closeness of the upper bound to the 
exact solution and the extreme simplicity of the result make 
this approximate solution of practical interest. 

Previous related works (Smith et al. [2], Balcerzak and 
Rayner [3], Lewis [4], Dungan [5], Laura and Susemihl [6], 
Laura and Sanchez Sarmiento 17, 141 and Simeza and Yov- 
anovich [8]) all considered layers of non-uniform thickness 
and therefore do not strictly apply to the uniform layer 
problem. 

To better define the problem, we first note that in the cross- 
sectional view (Fig. l(a)), the layer lies between two closed 
curves : an inner curve Ci, and an outer curve C,, which is 
spaced uniformly at perpendicular distance B from C,. Thus 
curve C, is defined as the locus of points traced by con- 
structing outward normals to C, and measuring out distance 

B along the normal. Sharp vertices in Ci that occur, for 
example, when C, is a polygon (Fig. l(b)), would appear to 
leave C, undefined by this construction process, over the 
region near the vertex. But if we consider the vertex as a 
limiting case of a small circular arc near the vertex, we find 
that, C,, is simply filled in by an arc of radius B centered at 
the vertex (Fig. 1 (c)). 

If B is sufficiently large, and C, is concave over parts of its 
length, the curve C, may be found to be self-intersecting 
(Fig. l(d)). This can happen only on concave regions of C, ; 
it occurs if a local radius of curvature is less than B. (Vertices 
having internal angles, 4, greater than R will always produce 
self-intersection of C,, regardless of B.) If C, self-intersects, 
one can question whether it is possible to actually produce 
a uniform layer surrounding the cylinder. Thus we exclude 
from the purview of the paper those combinations of B and 
C, that produce self-intersection of C,. 

The present paper’s derivation of an equation for S draws 
upon the observation of Elrod [9] that the value of S will be 
no greater than tnat derived when the shapes of the isotherms 
are arbitrarily assumed. The closer the assumed shapes are 
to those of the true isotherms, the more accurate will be the 
derived value of S. It happens that one particular set of 
assumed shapes for the isotherms satisfies many of the 
requirements for the true isotherm shapes and yields a very 
simple, general-purpose expression for the corresponding 
derived values of S. These particular assumed shapes are 
curves constructed identically to those used to construct C,, 
but spaced arbitrary distance u, rather than B, from C,, with 
0 < u < E. In this paper, the equation for S derived from 
this model is tested against exact results for some special 
cases chosen to be the most demanding on the model. 

ANALYSIS 

Properties of curves C, 
Let a curve constructed at constant perpendicular distance 

u from C, be denoted by C,. We first show that 

P, = p,+2nu (2) 

where P, and P, are the lengths (or perimeters) of C, and C,, 
respectively. We also show that any normal to C,, when 
extended to C, as a straight line, meets C. at right angles. To 
derive these results for a smooth curve, we let r, and r, 
represent the position vectors of various points on curves C. 
and C,, respectively, as shown in Fig. 2. Then 
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FIG. 1. Sketches of some possible curves C, and C, forming 
the bounds of the layer of uniform perpendicular thickness 
B between two given cylinders. (a) For a given C,, C, is 
generated by everywhere on C, measuring distance B out 
from C,. (b) If C, has a sharp corner, C, is undefined over a 
certain region. (c) This problem is overcome by filling in with 
a circular arc of radius B. (d) In some instances the C, so 
generated is found to be self-intersecting; these situations 
are not treated by the present analysis. Figure 1 (c) contrasts 
the shape of an adiabat near the vertex (dashed line) with a 

normal to the surface (dotted line). 

r, = r, + uft (3) 

where ti is the unit vector outward normal to C,. Taking 
the derivative of equation (3) with respect to the distance s, 
measured along C, gives (see for example Trim [IO]) 

where 2, = dr,/ds, and i” = dr,,/ds, are the unit tangent vectors 
along C, and C,, respectively. Upon forming the dot product 
of equation (4) with fi, and noting that ?, . ii = 0, we obtain 

(5) 

Since r’i* I = 1, it follows that the derivative on the right hand 
side of equation (5) is zero, so that equation (5) becomes 

ii*i, = 0. (6) 

And since tie?, = 0, it then follows that f = i,. Substituting 

Y 

FIG. 2. Vector representation of C, and C, used to develop 
the proof of equation (2). 

f, = f, in equation (4), forming the equation’s dot product 
with f,, and integrating the resulting equation with respect 
to d.r, around the whole curve C,, we obtain 

P,, = P, + u 
dir _ 

P--- c, ds, 
.t, ds,. (7) 

According to the third FrenettSerret formula applied to a 
planar region 

ditlds, = ;; r; 
/ 

where 0 is the angle between f, and the x-axis, equation (7) 
reduces to 

P,, = p,+u 
i 

cds, = P,+u do, 
c, d.s, i c, 

(8) 

and because for a non-self-intersecting C,, the tangent vector 
rotates through exactly 2n radian, regardless of the curve 
shape, equation (2) follows. 

This same equation can be readily derived for the case in 
which C, is a polygon of n sides, it being understood that, at 
the vertices, C, is completed by constructing arcs, as 
explained in the Introduction. In this case, one can readily 
show that P, and P, differ by the sum of the lengths of these 
arcs. Since all these arcs have the radius u, (P,-P,)/u is 
simply the sum of the polygon’s external angles minus n?r. 
and this difference reduces to 271. Thus equation (2) is valid 
for polygons as well as for smooth curves, and so it will 
obviously also be true for curves having both smooth parts 
and vertices. 

Curves C, (IS isotherms 
Following Elrod’s method, we arbitrarily choose the 

shapes of the isotherms, opting to choose the curves C,, (we 
leave until later a justification for this particular choice). To 
assign temperatures to the curves, we note that the resistance 
dR of the region between curves at u and u + du is given by 

dR=du= d” ____~ 
k/R,, kl(P, +2nu) 

(9) 

where I is the length measured in the axial direction. This 
equation follows from the fact that the region is so thin that 
it has the same thermal resistance as a planar region of the 
same thickness du and the same heat flow area IP,. The 
resistance R, from u = 0 to u = u is obtained by integrating 
equation (9) to give, 

R,,=&ln I+!$!! 
( >> 

(10) 

The total resistance, R, the quantity of ultimate interest. is 
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FIG. 3. Several sharp-cornered bodies for which the shape factor was computed by numerically solving the 

steady heat diffusion equation. 

obtained by setting u = B in equation (10) : 

R=&ln l+y 
( t) 

So the shape factor S per unit length I is given by 

Letting T,, be the temperature at isotherm a, continuity of 
heat flow Q gives 

Q = R(T,- r,) = R,(7-- T,). (13) 

From this we obtain the equation that assigns temperatures 
to the curves : 

T” = r,+(T”-TJ 
In (1 + 2xu/P,) 

ln(l+ZnB/P,) 
(14) 

The isotherms chosen in this way have a number of prop- 
erties in common with the true isotherms. First, they satisfy 
the boundary conditions and approach (as they should) C, 
and C. in a smooth way as IA -+ 0 and B, respectively. Second, 
the set of lines everywhere perpendicular to C, obey many 
of the necessary properties of the adiabats. For as was shown 
earlier, the normals to C,, are normal to C, at a = 0 and to 
C, at u = B (equation (6)). This means that at all isothermal 
boundaries, the curves normal to the proposed isotherms are 
perpendicular to the boundary-a necessary condition for 
matching the true adiabats. 

Indeed, the set C, and its normals obey so many properties 
required by the true isotherms and adiabats, that one may 
wonder whether they are in fact the true isotherms and abia- 
bats. But the one additional condition that must be satisfied 

(Eckert and Drake [l I])-that they must form curvilinear 
squares in the limit of very finely separated lines-is not 
satisfied. Deviations of the normals from the true adiabats 
are most pronounced around vertices. Examination of exact 
solutions around vertices shows that the true adiabats are 
curved: starting from a point on C, near the vertex (Fig. 
I(c)), they initially follow the normal to that surface, but 
then they bend to intersect C,, at the arc part of C,. The 
corresponding normals to C,, on the other hand, are straight 
everywhere and meet on the Aat part of C,. 

Since these differences are most pronounced near any ver- 
tices, the error associated with using equation (12) should be 
greatest when C, has vertices; moreover, the smaller the 
vertex angle, the greater should be the error. 

TESTING THE MODEL 

To evaluate the error in equation (12), we numerically 
solved Laplace’s equation inside the layers shown in Fig. 3. 
These regions, which are all generated by curves C, having 
sharp vertices, are as follows: the square, the equilateral 
triangle, the 60” rhombus, and the 2 : 1 rectangle. The cal- 
culations covered a range of thickness B (see Table I). 

The finite volume code used to numerically solve Laplace’s 
equation drew from the WATSHARE library of subroutines 
developed at the University of Waterloo, and used a grid 
refinement scheme developed by Galpin and Raithby [12]. 
The accuracy of the resulting code, which has been used in 
a previous study for three-dimensional bodies (see Hassani 
and Hollands [ 131) was tested by comparing its predictions 
for S/l with known analytical solutions (e.g. for C, being a 
circle); the errors were found to be less than 0.5%. Grid 
refinement was performed in each case until the difference 
between successive solutions was less than 0.5%. It was con- 

Table 1. Results for cylinders of various cross-sections 

Rhombus Triangular Square Rectangular 

Sll Sll Sll Sll 
Sll equation % Sll equation % Sll equation % Sll equation % 

B/L num. (12) diff. num. (12) diff. num. (12) diff. num. (12) diff. 

0.10 
0.15 
0.20 
0.40 
0.50 
0.60 
0.75 
1 .oo 
2.00 
3.00 

41.79 43.07 3.0 32.06 33.04 3.0 
29.16 29.69 1.8 22.50 22.99 2.2 
22.64 22.99 1.6 17.64 17.96 1.8 
12.56 12.89 2.6 10.02 10.32 3.0 
10.56 10.83 2.6 8.52 8.77 2.9 

7.86 8.07 2.1 6.46 6.65 2.9 
6.48 6.65 2.6 5.40 5.56 2.9 
4.32 4.42 2.3 3.72 3.82 2.7 
3.58 3.61 0.8 3.12 3.16 1.3 

41.91 
28.95 
22.43 
12.53 

9.24 

6.51 
4.36 
3.60 

43.07 2.8 
29.69 2.6 
22.99 2.5 
12.89 2.5 

9.46 2.4 

6.65 2.2 
4.42 1.4 
3.61 0.3 

61.31 63.09 2.9 
41.98 43.06 2.6 
32.23 33.04 2.5 
17.58 17.96 2.2 

12.59 12.88 2.3 

8.59 8.76 2.0 
5.46 5.56 1.8 
4.37 4.42 I.1 
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eluded that the difference between the exact value of S!I and 4. G. K. Lewis, Shape factors in conduction heat How for 
the numerically calculated value should bc less than about circular bars and slabs with various internal geometries ._.., 
* 1.0%. 

Comparison between the numerically calculated value of 5. 
S/l and that given by equation (12) is shown in Table I. This 
table shows that the values of S/l given by equation (12) 
agree with the numerically calculated ones to within a 6. 
maximum error of 3%. Part of this 3% error is attributable 
to the errors in the computational scheme ; the randomness 
of this type of error accounts for the fact that the error 7. 
changes with B/L ratio as shown in Table 1. As shown 
by Elrod [9], an arbitrary selection of the location of the 
isotherms produces an upper bound for the shape factor, 
and these calculations have borne this out : the results from 8. 
equation (12) are always higher than the results produced 
numerically. On the other hand, the assumed locations of 
the isotherms appear to be close enough to the true isotherms, 
because the maximum difference between the predicted 9. 
results and the numerical results in this work is only 3%. 
Since these results are for bodies having sharp vertices, equa- 
tion (12) should be even more precise for smooth bodies. 
Thus it would appear that equation (12) yields results suitable IO. 
for most engineering calculations. 
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